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Abstract

In this work, we present a new set of basis functions, defined over a pair
of planar triangular patches, for the solution of electromagnetic scattering
and radiation problems associated with arbitrarily-shaped surfaces using the
method of moments solution procedure. The basis functions are constant
over the function subdomain and resemble pulse functions for one and two
dimensional problems. Further, another set of basis functions, point-wise
orthogonal to the first set, is also defined over the same function space. The
primary objective of developing these basis functions is to utilize them for
the electromagnetic solution involving conducting, dielectric, and composite
bodies. However, in the present work, only the conducting body solution is
presented and compared with other data.



1 Introduction

The solution of electromagnetic scattering/radiation problems involving ar-
bitrary shapes and material composition is of much interest to commercial as
well as defense industries. The method of moments (MoM) [1] solutions to
these problems generally involve triangular patch modeling and utilizing Rao-
Wilton-Glisson (RWG) basis functions[2]. It may be noted that the RWG
basis functions have been primarily defined for the solution of conducting
bodies and the utilization of the same basis functions for dielectric/composite
bodies is less than satisfactory. The primary difficulty associated with a ma-
terial body solution is the requirement of two orthogonal basis functions to
express unknown electric and magnetic currents J and M. In our opinion,
using the same basis functions for both J and M is not a good idea and
invariably results in numerical difficulties. However, a host of techniques
have been developed which involve either tinkering with the basis functions
or modifying the testing procedures to apply for material bodies [3, 4, 5].
Keeping these difficulties in perspective, in this work, we present two sets of
basis functions, each one point-wise orthogonal to the other function, which
can be used for conducting as well as material bodies. The present work,
however, involves only conducting bodies along with several numerical re-
sults. The solution of the material body problem will be presented in due
course.

2 Description of the Problem

Let S denote the surface of an arbitrarily-shaped perfectly conducting body
illuminated by an incident electromagnetic plane wave E* as shown in Fig-
ure 1. Using the equivalence principle, the potential theory and the free-space
Green’s function [1], the electric field integral equation (EFIE) is given by

[ij + V(I)]mn = Eian (1>
where the subscript “tan” refers to the tangential component. In (1),
A = u/JsGds' (2)
s
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€ and p are permittivity and permeability of the surrounding medium, £ is
the wave number and r and 7’ represent the position vectors to observa-
tion and source points, respectively, from a global coordinate origin. The
unknown surface current J is related to the charge density g by the conti-
nuity equation, given by

Veld, = —jwq, (6)

For the numerical solution of (1), we apply the method of moments for-
mulation using the planar triangular patch modeling and the basis functions
as described in the following:

3 Description of Basis Functions

Let T and T represent two triangles connected to the edge n of the triangu-
lated surface model as shown in Figure 2. We define two mutually orthogonal
vector basis functions associated with the n'” edge as

Fo(r) = { atxf, rebs, (7)

0, otherwise

and

£, res,

gulr) = { 0, otherwise (8)
where S,, represents the region obtained by connecting the mid-points of the
free-edges to the centroids of triangles 7=, and to the nodes of edge n. Note
that this area is shown shaded in the Figure 2. Also, ¢ and a: represent
the unit vector along the n'* edge and the unit normal vector to the plane
of the triangle T'F, respectively. Note that the basis functions defined in (8)
are actually the pulse functions defined over the region S,,. It is well-known
that the pulse functions do not have continuous derivatives but result in delta
distributions along the boundary. This point is crucial in modeling the charge
density and the calculation of scalar potential which may be accomplished
as described in the following section. Also, note that in this work, only PEC
bodies are analyzed and hence only f,’s are used in the method of moments
solution.



4 Numerical Solution Procedure

As a first step, we consider the testing procedure. Consider the m" interior
edge, associated with triangles T=. We integrate the vector component of
(1) parallel to the path from the centroid r¢5 of T,/ to the midpoint of the
edge 7, and thence from r,, to the centroid of 7 given by 7¢ . For both
path integrations, approximate A and E’ by their respective values at the
mid-points of each path. Thus, we have,

c+ c—
joA (m;m> o (rm =75 + A (m;m) o (i — )t

c— c _ I T'm + T?r—zi_
[w(rsr) — o) = ("

i [(Tm+ T c—
FE <2> o (ri. —1rpy) (9)

for m = 1,2,-, N, where N represents the total number of interior edges in
the triangulation schemet.e. excluding the edges on the boundary for an open
body.

Next, we consider the expansion procedure. Using the basis functions f,,
defined in (8), we approximate the unknown current J as

N
> LS, (10)

Next, substituting the current expansion (10) into (9) yields an N x N system
of linear equations which may be written in matrix form as ZI = V| where
Z = [Zyy) is an N x N matrix and I = [I,,] and V' = [V},,] are column vectors
of length N. The elements of the Z and V are given by

Ve = Ele(r,—rH)+E_e(rS, —7r,,) (12)
where
o—ikRE
Ab, = n / b (13)
e—gkR“—L
dr = — [ V,ef ds’ (14)
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RE = 5T (15)

Ryf o= =l (16)
ct

Ef = FE ('rm;'rm> (17)

The numerical evaluation of the vector potential, shown in (13), is straight
forward and may be accomplished by the procedure described in [6]. How-
ever, the numerical evaluation of the scalar potential term, described in (14),
may be carried out as follows:

Let us define the unknown charge density ¢, in (3), as

Np
=1

where Np represents the number of triangular patches in the model and

1, reT
Pi(r) = {O, otherwise (19)

Next, consider a triangular patch T; with associated non-boundary edges, i1,
i, and i3. Then, using (6), the well-known Divergence theorem, and simple
vector calculus, we have

/qsds = /VS,.st

_ ij{ J e n,dl
w C;

= l[‘lllgll + Ii2£i2 + Iiseis] (20)
w

where C}; is the contour bounding the triangle T;, n, is the unit normal vector
to the contour Cj in the plane of T;, and ¢;;,7 = 1,2,3 represent the edge

lengths. Also, note that
/ qsds = / o;ds
T T

7



where A; represents the area of the triangle 7;. Lastly, using (20) and (21),
we have

o = i[l *2“ 33] (22)
Thus, we can write the scalar potential term in (14) as,
. c+ . ct
Gy 1 e IkRm 1 e~ IkRm
o = ds' ds’ 23
mn we | Ap+ Jrb AT RSE T A, Jry AnRer (23)

The integrals in (23) may be evaluated with the procedures described in [6].
Finally, once the matrices Z and V are determined, one may easily solve
the system of linear equations to obtain I.

5 Numerical Results

In this section, we present numerical results for a square plate (length =
0.15), circular disk (diameter = 0.15)), a sphere (diameter = 0.15)) and a
circular cylinder (diameter = 0.15A, length = 0.15)), and compare with the
solution obtained using the procedure presented in [2]. Also, for the case of
sphere, the results are compared with exact solution. The plate, the disk, the
sphere, and the cylinder are modeled with 312, 258, 500, and 320 triangles,
respectively. In every case, the body is placed at the center of the coordinate
system and illuminated by an x-polarized plane wave traveling along the z-
axis. Further, the square plate and the circular disk are oriented parallel to
the xy-plane. The bistatic radar cross section is presented in figures 3, 4,
5, and 6. We note that the results compare well with the other numerical
results.

6 Conclusions

In this work, we present a new set of basis functions for the method of mo-
ment solution of electromagnetic scattering by conducting bodies of arbitrary
shape. The new basis functions are pulse basis functions defined over a pair
of triangular patches. Another set of basis functions, point-wise orthogonal
to the first set, are also presented. It is hoped that these two sets of basis



functions in conjunction with method of moments solution procedure, pro-
vides a more stable solution to material problems. However, in the present
work, only conducting scatterers are analyzed with the new basis functions
and compared with other solutions. At present, the work is in progress to
apply the new basis functions to material bodies and will be reported in
future.
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Figure 1: Arbitrarily-shaped conducting body excited by an incident elec-
tromagnetic plane wave.



Figure 2: Basis function description.
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Figure 3: Bistatic RCS of a square plate.
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Figure 4: Bistatic RCS of a circular disk.
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Figure 5: Bistatic RCS of a sphere.

12



e
QN
0
o

<7

<2

< N\

0.004 |

==

%

<]

<7

=

0 . . . . SPN . .
0O 20 40 60 80100 120140160180

Theta [degrees]

Figure 6: Bistatic RCS of a circular cylinder.
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